Notes about math, research, and more.
Let \(B\) be the standard basis of \(V = \mathbb{C}^n\).
- Let \(v \in \mathbb{C}^n\). Prove \([v]_{B} = v\).
- Let \(A \in M_{n(\mathbb{C})}\). Let \(T \in \text{End}(\mathbb{C}^n)\) be the
linear map given by left multiplication by \(A\). So for
\(v \in \mathbb{C}^n\), \(T(v) = Av\). Prove \([T]_{B} = A\).
(a) Let \(v \in V\) and \(v_{1},\ldots,v_{n} \in \mathbb{C}\) such that \(v
= (v_{1},v_{2},\ldots,v_{n})\). Let \(\{e_{1},\ldots,e_{n}\}\) denote the
standard basis. Then \(v_{i}e_{i} = (0,\ldots,0,v_{i},0,\ldots,0)\)
where \(v_{i}\) is in the \(i\)th coordinate. Hence, \(v = \sum_{i=1}^n
v_{i}e_{i}\) and the coordinate vector \([v]_{B}\) with respect to the
standard basis is \(v\).
(b) For all \(j \in \{1,\ldots,n \}\), the \(j\)th column of \([T]_{B}\) is
\([Te_{j}]_B\). By definition of \(T\), \([Te_{j}]_B = [Ae_{j}]_B\) and from
above, \([Ae_{j}]_B = Ae_{j} = (a_{1j},a_{2j},\ldots,a_{nj})^T\). Hence,
each column of \([T]_{B}\) is the corresponding column of \(A\) so \([T]_B=A\).
Let \(V\) be an \(n\)-dimensional inner product space, and let \(B\) be an
orthonormal basis of \(V\). As we know \(F:V \to \mathbb{C}^n\) given by
\(F(v) = [v]_{B}\) is a vector space isomorphism. We now consider
\(\mathbb{C}^n\) as an inner product space with the standard inner product.
- Prove that \(F\) preserves inner products:
\(\langle v, w \rangle = \langle F(v), F(w) \rangle\) for all \(v,w \in V\).
- Prove that \(C\) is an orthonormal basis of \(V\) if and only if \(F(C)\)
is an orthonormal basis of \(\mathbb{C}^n\).
(a) Denote the elements of \(B\) as \(\{b_{1},b_{2},\ldots,b_{n}\}\).
Then \(\langle Fb_{i}, Fb_{j} \rangle = \langle
(0,\ldots,b_{i},0,\ldots,0), (0,\ldots,b_{j},0,\ldots,0) \rangle =
\delta_{ij}\). Hence, if \(v = \sum_{i=1}^{n} v_{i}b_{i}, w =
\sum_{i=1}^{n} w_{i}b_{i} \in V\), then \(\langle Fv, Fw \rangle = \sum_{i=1}^n
v_{i}\overline{w_{i}} = \langle v, w \rangle\).
(b) Let \(C = \{ c_{1},\ldots,c_{n} \}\) be an orthonormal basis of \(V\). Then, from (a),
\begin{align*}
\delta_{ij} = \langle c_{i},c_{j} \rangle \iff \langle Fc_{i}, Fc_{j} \rangle = \delta_{ij} ~\forall i,j \in \{1,\ldots,n \}.\\
\end{align*}
Hence the set \(F(C)\) is orthonormal if and only if \(C\) is orthonormal.
Isomorphisms between vector spaces take bases to bases so \(F(C)\) is an
orthonormal basis if and only if \(C\) is an orthonormal basis.
Let \(B\) be an orthonormal basis of an \(n\)-dimensional inner product
space \(V\). Let \(T \in \text{End}(V)\). Prove that \(T\) is
unitary if and only if \([T]_{B}\) is unitary.
Let \(T \in \text{End}(V)\). Previously we proved that \(([T^*]_{B}) =
([T]_{B})^*\) and that \(T \mapsto [T]_{B}\) is an isomorphism from
\(\text{End}(V)\) to \(M_n(\mathbb{C})\). Since isomorphisms preserve
inverses, \([T^{-1}]_{B} = ([T]_{B})^{-1}\). Thus,
\begin{align*}
T \text{ is unitary } &\Leftrightarrow \langle Tv, Tw \rangle = \langle v, w \rangle \quad\forall v,w \in V \\
&\Leftrightarrow \langle T^*Tv-v, w \rangle = 0 \quad\forall v,w \in V \\
&\Leftrightarrow T^*Tv = v \quad\forall v \in V\\
&\Leftrightarrow T^* = T^{-1} \\
&\Leftrightarrow [T^*]_{B} = [T^{-1}]_{B} \text{ by the isomorphism } T \mapsto [T]_{B}; \\
&\Leftrightarrow ([T]_{B})^* = ([T]_{B})^{-1} \\
&\Leftrightarrow [T]_{B} \text{ is unitary}.
\end{align*}
Let \(V\) be an inner product space and let \(T:V \to V\) be a linear
transformation. Show that \(T\) is self-adjoint if and only if \(V\) has
an orthonormal basis of eigenvectors of \(T\) and the eigenvalues are
real.
Let \(T\) be self-adjoint. Then, from previous work, \([T]_{B} =
[T^*]_{B} = ([T]_{B})^*\). By the Spectral Theorem, the eigenvalues of
\(([T]_{B})^*\) are real. Further, the proof of the Spectral Theorem
constructs an orthonormal basis which is the eigenvectors of
\([T]_{B}\). By Exercise B and the fact isomorphisms take bases to
bases, the images of the eigenvectors of \([T]_B\) under the
isomorphism \([v]_{B} \mapsto v\) form an orthonormal basis in \(V\). Now, we
show that this orthonormal basis consists of the eigenvectors of \(T\).
Let \(v \in V\) such that \([v]_{B}\) is an eigenvector of \([T]_B\) with
corresponding eigenvalue \(\lambda\). Then,
\[
[Tv]_B = [T]_{B}[v]_{B} =\lambda[v]_{B} = [\lambda v]_{B} \implies Tv = \lambda v.
\]
Conversely, assume that \(V\) has an orthonormal basis of eigenvectors of \(T\) and
the eigenvalues are real. Let \(\Lambda_{i}\) be the \(i\)th eigenvector
of \(T\) and \(\lambda_{i}\) the corresponding eigenvalue.
Let \(v = \sum_{i=1}^n a_{i}\Lambda_{i},w = \sum_{j=1}^n
b_{j}\Lambda_{j} \in V\). Then,
\begin{align*}
\langle Tv, w \rangle &= \left\langle T\sum_{i=1}^n a_{i}\Lambda_{i},\sum_{j=1}^n b_{j}\Lambda_{j} \right\rangle \\
&= \left\langle \sum_{i=1}^n a_{i}\lambda_{i}\Lambda_{i},\sum_{j=1}^n b_{j}\Lambda_{j} \right\rangle \text{ since } T\Lambda_{i} = T\lambda_{i} \quad \forall i \in \{1,\ldots,n \}\\
&= \sum_{i=1}^n a_{i}\lambda_{i} \left\langle \Lambda_{i},\sum_{j=1}^n b_{j}\Lambda_{j} \right\rangle \\
&= \sum_{i=1}^n a_{i}\lambda_{i}\left( \sum_{j=1}^n \overline{b_{j}} \left\langle \Lambda_{i},\Lambda_{j} \right\rangle \right) \\
&= \sum_{i=1}^n a_{i}\lambda_{i} \overline{b_{i}} \left\langle \Lambda_{i},\Lambda_{i} \right\rangle \text{ since } \Lambda_{i} \text{form an orthonormal basis};\\
&= \sum_{i=1}^n \left\langle a_{i}\Lambda_{i},\lambda_{i} b_{i} \Lambda_{i} \right\rangle \text{ since } \lambda_{i} \in \mathbb{R} \quad \forall i \in \{1,\ldots,n \};\\
&= \langle v, Tw \rangle.
\end{align*}
Since \(T^*\) is the unique linear operator such that \(\langle Tv, w
\rangle = \langle v, Tw \rangle\) for all \(v,w \in V\) we conclude
that \(T\) is self-adjoint.