Notes about math, research, and more.

Scoring tools to download use average function (\(\Sigma\) on “home”) In libreoffice ctrl+shift+v to paste just values

Students in Webwork not in class Two copies of melissa hill Jesse Starke Leif hogg Elizabeth Wensley cacssidy schweitazer

Students in class not in webwork

Steps:

  1. Export whole gradebook from canvas
    1. Rename to master.csv
  2. Export webwork (from the “Scoring Tools” tab)
    1. Rename to sub.csv
    2. Rename columns for student id to ’SIS User ID’ and webwork to ’WebWork Average (233950)’
  3. Run merge.py (below)
  4. Upload results.csv to canvas
import pandas as pd

def merge_scores(master_file, sub_file, output_file='results.csv'):
    """
    Merge WebWork scores from sub file into master file based on SIS User ID.
    Rows in sub file with SIS User IDs not present in master file are ignored.

    Parameters:
    master_file (str): Path to the master CSV file
    sub_file (str): Path to the sub CSV file containing new scores
    output_file (str): Path where the resulting CSV will be saved
    """
    try:
        webwork_col = 'WebWork Average (233950)'
        # Read the CSV files
        master_df = pd.read_csv(master_file)
        sub_df = pd.read_csv(sub_file)

        # Verify required columns exist
        required_columns = ['SIS User ID', webwork_col]
        for df, name in [(master_df, 'master'), (sub_df, 'sub')]:
            missing_cols = [col for col in required_columns if col not in df.columns]
            if missing_cols:
                raise ValueError(f"Missing required columns in {name} file: {missing_cols}")

        # Create a copy of master dataframe to preserve original data
        result_df = master_df.copy()

        # Get only the SIS User IDs that exist in master
        valid_ids = set(master_df['SIS User ID']).intersection(set(sub_df['SIS User ID']))

        # Filter sub_df to only include rows with valid IDs
        filtered_sub_df = sub_df[sub_df['SIS User ID'].isin(valid_ids)]

        # Create a dictionary of new scores from filtered sub file
        score_updates = dict(zip(filtered_sub_df['SIS User ID'], filtered_sub_df[webwork_col]))

        # Update scores in result dataframe
        result_df.loc[result_df['SIS User ID'].isin(score_updates.keys()), webwork_col] = \
            result_df.loc[result_df['SIS User ID'].isin(score_updates.keys()), 'SIS User ID'].map(score_updates)

        # Save the result to a new CSV file
        result_df.to_csv(output_file, index=False)

        # Print summary of updates and ignored rows
        num_updates = len(valid_ids)
        num_ignored = len(sub_df) - num_updates
        print(f"Successfully updated {num_updates} scores")
        print(f"Ignored {num_ignored} rows from sub file (IDs not found in master)")
        print(f"Results saved to {output_file}")

    except Exception as e:
        print(f"An error occurred: {str(e)}")

if __name__ == "__main__":
    # Example usage
    merge_scores('master.csv', 'sub.csv', 'results.csv')